

Title: NEON Sensor Command, Control and
Configuration – Secondary Precipitation - Tipping
Bucket

NEON Doc. #: NEON.DOC.000367

Author: J. Roberti

Date: 5/17/2012

Revision: A

NEON Sensor Command, Control and Configuration – Secondary Precipitation - Tipping Bucket

PREPARED BY:	ORGANIZATION:	DATE:
Josh Roberti	FIU	4/02/2012
APPROVALS (Name):	ORGANIZATION:	APPROVAL DATE:
	1	

APPROVALS (Name):	ORGANIZATION:	APPROVAL DATE:
Hanne Buur	CCB DIR SE	5/17/2012
Hank Loescher	FIU	5/17/2012
Tony Beasley	CCB CHAIR	5/14/2012

RELEASED BY (Name):	ORGANIZATION:	RELEASE DATE:
Anne Balsley	CCB ADMIN/DCS	5/17/2012

See Configuration Management System for Approval History.

Title: NEON Sensor Command, Control and Configuration – Secondary Precipitation - Tipping Bucket	Author: J. Roberti	Date: 5/17/2012
NEON Doc. #: NEON.DOC.000367		Revision: A

Change Record

REVISION	DATE	ECO#	DESCRIPTION OF CHANGE
А	5/17/2012	ECO-00412	Initial Release

Title: NEON Sensor Command, Control and Configuration – Secondary Precipitation - Tipping Bucket

NEON Doc. #: NEON.DOC.000367

Author: J. Roberti

Date: 5/17/2012

Revision: A

TABLE OF CONTENTS

1	DE:	SCRIPTION1				
	1.1	Purpose	1			
	1.2	Scope				
2		lated documents and acronyms				
	2.1	Applicable Documents				
	2.2	Reference Documents				
	2.3	Acronyms				
	2.4	Verb Convention				
3	Inti	roduction	3			
4	Ove	erview of Sensor configuration	3			
5		mmand and Control				
	5.1	Error handling	3			
	5.2	Heater controls	3			
LI	IST OF	TABLES				
т	ahla 1	Sensor configuration settings Parameters only applicable to model 270 are denoted with *	2			

Title: NEON Sensor Command, Control and		
Configuration – Secondary Precipitation - Tipping	Author: J. Roberti	Date: 5/17/2012
Bucket		
NEON DOC #: NEON DOC 000367		Revision: A

1 DESCRIPTION

1.1 Purpose

This document specifies the command, control, and configuration details for operating NEON's secondary precipitation tipping buckets. It includes a detailed discussion of all necessary requirements for operational control parameters, conditions/constraints, set points, and any necessary error handling.

1.2 Scope

Met One's model 372 (non-heated; NEON P/N: 0308070001) and model 379 (heated; NEON P/N: 0308070003) tipping buckets (RD [03], RD [04]) will be used throughout NEON's Observatory to monitor secondary precipitation. Sites prone to freezing temperatures will use the 379 model; while sites not prone to freezing temperatures will use 372. There is no firmware associated with these sensors. This document specifies the command, control, and configuration that are needed for operating these sensors. It does not provide implementation details, except for cases where these stem directly from the sensor conditions as described here.

Title: NEON Sensor Command, Control and Configuration – Secondary Precipitation - Tipping Bucket	Author: J. Roberti	Date: 5/17/2012
NEON Doc. #: NEON DOC 000367		Revision: A

2 RELATED DOCUMENTS AND ACRONYMS

2.1 Applicable Documents

AD [01]	NEON.DOC.000001	NEON Observatory Design (NOD) Requirements
AD [02]	NEON.DOC.000291	NEON Configured Sensor List
AD [03]	NEON.DOC.005003	NEON Scientific Data Products Catalog
AD [04]	NEON.DOC.005005	NEON Level 0 Data Products Catalog

2.2 Reference Documents

RD [01]	NEON.DOC.000008 NEON Acronym List
RD [02]	NEON.DOC.000243 NEON Glossary of Terms
RD [03]	Met One Instruments. 2005. Operational Manual: Model 375C 8" Rain Gauge. Document # 375C-9800.
RD [04]	Met One Instruments. 2010. 370 – 380 Series Precipitation Gauges (datasheet).

2.3 Acronyms

Acronym	Explanation
ATBD	Algorithm Theoretical Basis Document
C ³	Command, Control, and Configuration Document
SOP	Standard Operating Procedures
QA/QC	Quality Assurance/Quality Control
TIS	Terrestrial Instrument System
LO	Level 0
L1	Level 1
ENG	NEON Engineering group
CI	NEON Cyberinfrastructure group
DPS	NEON Data Products group
CVAL	NEON Calibration, Validation, and Audit Laboratory
P/N	Part Number

Title: NEON Sensor Command, Control and Configuration – Secondary Precipitation - Tipping Bucket	Author: J. Roberti	Date: 5/17/2012
NEON Doc. #: NEON.DOC.000367		Revision: A

2.4 Verb Convention

"Shall" is used whenever a statement expresses a convention that is binding. The verbs "should" and "may" express non-mandatory provisions. "Will" is used to express a declaration of purpose on the part of the design activity.

3 INTRODUCTION

This document describes the configuration, command and control related with the secondary precipitation tipping buckets and their corresponding data products (FIU.0.0006). For information regarding maintenance or topics concerning computer algorithms, please refer to the SOP (AD [#]) and ATBD (AD [#]) documents, respectively.

4 OVERVIEW OF SENSOR CONFIGURATION

Met One's 372 and 379 precipitation gauge configurations are presented in Table 1.

Table 1. Sensor configuration settings. Parameters only applicable to model 379 are denoted with *.

Parameter	Default Setting
Heater*	Off
Data acquisition streams	Tip (Reed closure)
Acquisition rate	2 Hz maximum
Tipping threshold	0.5mm

5 COMMAND AND CONTROL

5.1 Error handling

Given that the tipping buckets do not acknowledge any errors, there are no command and control requirements for either the 372 or 379 models. The detection of errors will be managed entirely through state of health monitoring through the DAS by CI at headquarters.

5.2 Heater controls

The thermostat set point is 4.4°C. Once the temperature falls (rises) to this set point the heater will automatically be turned on (off). The temperature set point cannot be overridden.